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Abstract 

This groundbreaking study asks whether AI and drone technologies can help 

feed Africa’s future in a humane way, showing that they have the potential to 

make a big difference but are held back by systemic inequalities. The study 

document shows real benefits through a mixed-methods analysis: Kenyan 

smallholder yields went up by 28.7% and dietary diversity went up by 22% 

thanks to Apollo Agriculture’s credit-linked platform. South African orchards 

saved 35% on irrigation costs thanks to Aerobotics’ precision analytics. But these 

gains are still harvests of exclusion: 68% of resource-poor farmers can’t afford 

the costs (more than $200/ha), and digital literacy barriers (OR=0.42) take away 

people’s ability to act. Algorithmic betrayal hurts people who own degraded 

land (less than 10% of the gains), which keeps colonial legacies alive that take 

away the dignity of customary land stewards. Regulatory dissonance (Kenya’s 

47-day drone permits shrinking crisis coverage by 41%) is an example of how 

bureaucratic indifference puts people’s lives at risk during climate shocks. It’s 

important to note that 78% of female farmers say that tools don’t work with the 

way they work, which shows gendered design violence. Three revolutions will 

lead to redemption: sociotechnical congruence that respects oral knowledge 

traditions, algorithms that are made with communities to avoid bias, and policy 

harmonization that puts smallholder sovereignty at the center. These 

technologies can only become seeds of food sovereignty instead of tools of 

division if they are designed to be fair, with governments paying for digital 

literacy programs for women, developers making voice-native interfaces, and 

donors paying for offline analytics. Without this moral reset, innovation could 

make the problems it promised to solve even worse, putting human dignity at 

risk on the climate frontier. 
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Introduction 

Background and Reasons for Writing 

Africa is facing an increasing food security crisis that is made much worse by the effects of 

climate change getting worse faster. Unusual patterns of rainfall, long and severe droughts, 

terrible floods, and more outbreaks of pests and diseases are all making farming systems less 

stable across the continent (FAO et al., 2021). Millions of smallholder farmers are at risk of 

losing their lives because of this instability. These farmers are the backbone of African 
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agriculture, but they are very vulnerable because they rely on rain-fed production and have 

trouble getting the resources they need, such as money, inputs, and information (AGRA, 2023). 

Climate-Smart Agriculture (CSA) is a key framework for tackling this set of problems. Its goals 

are to increase agricultural productivity and incomes in a way that is sustainable, improve the 

ability to adapt to climate change and variability, and, if possible, lower or eliminate 

greenhouse gas emissions (FAO, 2013; Lipper et al., 2014). Even though CSA practices have a 

lot of potential, they are still not widely used by Africa’s large smallholder population. This is 

because of high upfront costs, ongoing knowledge and information gaps, limited access to 

customized inputs and technologies, and lack of institutional support (Zougmoré et al., 2016; 

Aryal et al., 2020). 

At the same time, the rapid growth and merging of Artificial Intelligence (AI) and drone 

(Unmanned Aerial Vehicle - UAV) technologies create new chances to change precision 

agriculture and, by extension, the use of CSA. AI algorithms can handle huge and complicated 

datasets, which means they can give us very data-driven insights that can help us make better 

decisions. These are some of the things that can be done: precise irrigation scheduling, targeted 

fertilizer and pesticide application, early and accurate detection of pests and diseases, strong 

yield prediction, and personalized advisory services (Kamilaris et al., 2017; van Klompenburg 

et al., 2020). In addition, drone technology lets you monitor things from the air at a high 

resolution and on a large scale. Drones can quickly check the health of crops, the condition of 

the soil, and the differences in fields over large areas, often better than surveys done from the 

ground. Also, they make it easier to apply inputs like biological controls or micronutrients 

directly where they are needed, which makes the process more efficient and cuts down on 

waste (Zhang & Kovacs, 2012; Radoglou-Grammatikis et al., 2020). 

African innovators are leading the way in making the most of this potential. Companies like 

Apollo Agriculture in Kenya use AI, remote sensing, and mobile technology to give small 

farmers bundled solutions that include tailored inputs, financing, and insurance. These 

solutions are mostly based on credit scoring and agronomic models (Apollo Agriculture, n.d.). 

Aerobotics in South Africa, on the other hand, uses drone and satellite imagery to provide AI-

powered tree crop health analytics and yield estimation mainly for commercial farms. This 

shows how flexible these technologies are (Aerobotics, n.d.). These pioneers provide 

invaluable real-world labs for learning about the real-world effects, operational problems, and 

ways to scale up advanced AgriTech in a variety of African settings. 

But there is still a big gap in the research. It is widely accepted that AI and drones could 

improve agriculture in Africa, but there is still not enough strong empirical evidence that 

shows how they affect core food security outcomes like yield stability, farmer income, 

nutritional security, and resilience to climate shocks in African smallholder systems (Tsolakis 

et al., 2021). It is very important that we quickly compare the effectiveness, cost-effectiveness, 

and scalability of the different AI/drone application models that are common in Africa 

(Wolfert et al., 2017). These include credit-linked input delivery, automated pest detection, 

and hyper-local yield forecasting. To design effective interventions, it is very important to 

understand how socio-economic factors (like cost, digital literacy, and gender dynamics), 

institutional frameworks (like data governance, extension services, and policy support), and 

technological enablers and barriers (like connectivity, power supply, and platform usability) 

all work together to determine whether African farmers adopt and continue to use technology 

(Klerkx et al., 2019; Jakku et al., 2019). Finally, research needs to actively look into the ethical 
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aspects and fair distribution of benefits, carefully considering possible risks like data privacy 

breaches, algorithmic bias, widening digital divides, and the exclusion of vulnerable groups 

from the agricultural value chain as these new technologies become more common (Carbonell, 

2016; Bronson, 2019). To fully realize the transformative potential of AI and drones to create 

truly climate-smart and fair food systems in Africa, we need to address these interconnected 

research needs. The research suggests that to make this potential a reality, we need a new way 

of thinking called “Human-Centric Digital Agroecology.” This way of thinking puts the 

farmer’s power, ecological synergy, and fair sharing of benefits at the center of technological 

change. 

Problem Statement for the Research 

There is a critical lack of actionable knowledge, even though it is clear that building climate-

resilient food systems across Africa is very important and that AI and drone (Unmanned 

Aerial Vehicle - UAV) technologies can make a big difference. There is still not enough strong 

empirical evidence that specifically measures the causal effects of AI and drone-enabled 

Climate-Smart Agriculture (CSA) interventions on real food security outcomes for the 

continent’s diverse agricultural stakeholders, especially smallholders who are short on 

resources and make up the majority of the sector (Tsolakis et al., 2021). There are some 

promising pilot projects and business ventures, but there aren’t many rigorous, context-

specific studies that can separate the effects of these technologies on important metrics like 

yield stability under climate stress, net farm income, household nutritional adequacy, and 

improved adaptive capacity. Also, there is a big lack of systematic understanding about the 

complicated web of factors that either make it easier or harder for these advanced AgriTech 

solutions to be widely, long-term, and, most importantly, fairly adopted in the diverse 

agricultural landscape of Africa. This lack of knowledge includes the complex interactions 

between socio-economic factors (like affordability, digital literacy, gender differences, and 

land tenure), institutional frameworks (like data governance policies, extension service 

integration, and regulatory environments), and technological enablers and barriers (like 

reliable connectivity, power infrastructure, and platform accessibility) (Klerkx et al., 2019). AI 

and drones have the potential to bring about a truly climate-smart agricultural transformation 

in Africa, but this potential may never be realized unless we fully understand both the specific 

effects on different farming systems and the many factors that lead to adoption. This lack of 

knowledge makes it hard to create effective policies, targeted investments, and scalable 

implementation strategies based on “Human-Centric Digital Agroecology,” which puts the 

needs of farmers, ecological synergy, and fair benefit-sharing at the top of the list. This gap 

could end up leaving behind the communities whose food futures are most uncertain, which 

would keep them vulnerable instead of making them strong for millions of people. 

Questions for Research  

This study is based on five related research questions that aim to fill a major gap in research 

and show how AI and drone-enabled Climate-Smart Agriculture (CSA) can help make African 

food more secure. It is also based on the need for “Human-Centric Digital Agroecology.” 

RQ1 (Effect on Food Security Outcomes): What is the causal effect of certain AI- and drone-

enabled CSA practices (like Apollo Agriculture’s credit-linked input bundles and Aerobotics’ 

pest detection) on real-world outcomes for smallholder farmers? We need to carefully measure 



4    S. S. DZREKE 

 

 

improvements in yield stability under climate stress, net farm income, household nutritional 

security, and the ability to adapt in different African contexts. This goes beyond pilot 

enthusiasm to find strong, causal proof of effects on the main pillars of food security (Tsolakis 

et al., 2021). 

RQ2 (Comparative Effectiveness & Scalability): How do common AI and drone application 

models (like credit-linked input + AI advice, drone precision spraying, real-time AI advisory, 

and automated pest detection) stack up in terms of effectiveness (yield gain/resilience per unit 

cost), scalability potential (across farm size, agro-ecology, and market access), and cost-benefit 

ratios in places like Kenya and South Africa? It is important to know these trade-offs in order 

to choose the best scalable pathways (Wolfert et al., 2017). 

RQ3 (Adoption Barriers & Enablers): What are the key socio-economic barriers (affordability, 

digital literacy, gender, finance), institutional hurdles (extension misalignment, policy gaps, 

land tenure), and technological constraints (connectivity, power, usability, maintenance) that 

make it hard to adopt, and on the other hand, what are the key enablers that encourage 

sustained use among a wide range of smallholders? To create interventions that give farmers 

more control during the digital transition, it is important to map out this socio-technical 

landscape (Klerkx et al., 2019). 

RQ4 (Fairness and Inclusiveness): How do access, real benefits (like income, saved labor, and 

lower risk), and possible risks (like data privacy breaches, algorithmic bias, debt, and 

exclusion) differ among farmers based on their demographics (gender, age, landholding, 

income)? What steps can be taken to lower risks like the digital divide widening and make 

sure that benefits are fairly distributed, protecting vulnerable groups? “Human-Centric Digital 

Agroecology” (Bronson, 2019) says that putting equity at the center is not up for debate. 

RQ5 (Policy and Regulatory Environment): What specific policy frameworks (like CSA 

strategies and digital infrastructure support), regulatory environments (like drone rules, data 

governance, and algorithmic transparency standards), and institutional arrangements (like 

PPP models and farmer data cooperatives) are needed to create an ecosystem that supports 

the ethical, efficient, and widespread scaling of AI/drone-enabled CSA while protecting 

farmers’ rights and dignity and maximizing food security contributions? For responsible 

innovation on a large scale, systemic enablers are very important. 

When taken together, these questions create a strong framework for gathering the evidence 

needed to turn the promise of technology into real, fair, and strong food futures for Africa. 

Newness and Contribution  

This study makes several unique contributions to the fast-changing field of AgriTech for 

African climate resilience. These contributions are based on scholarly rigor and a “Human-

Centric Digital Agroecology” philosophy. First, it comes up with a strong way to find causal 

links. This study goes beyond the usual correlational studies used in early tech evaluation. It 

uses strict designs to measure the direct causal effect of specific AI and drone-enabled Climate-

Smart Agriculture (CSA) interventions on real food security outcomes for smallholder farmers 

in Africa, such as stable yields under stress, higher net income, better nutrition security, and 

clear gains in adaptive capacity. It is very important for evidence-based scaling decisions to 

move from association to attribution (Tsolakis et al., 2021). 



FRONTIERS IN RESEARCH    5 

Second, the study uses a strong Comparative Case Study Approach that uses real-world 

African innovation. The study uses a systematic comparison of the different business models 

of Apollo Agriculture (Kenya, smallholder credit-linked inputs/AI advice) and Aerobotics 

(South Africa, drone analytics for tree crops) to come up with insights that are rich in evidence 

and grounded in the real world. This way of looking at things shows how different AI and 

drone application models affect different African agro-ecological and market contexts in 

different ways, as well as the challenges they face and the ways they can be scaled up. This 

level of detail is often missing from broad surveys or small pilots. 

Third, it moves forward a Holistic Framework for Adoption Dynamics that brings together 

different points of view. Using socio-technical systems theory (Klerkx et al., 2019) as a starting 

point, the study combines social and economic factors (affordability, digital literacy, gendered 

access), institutional enablers and barriers (policy coherence, extension synergy, data 

governance), and technological factors (connectivity, usability, maintenance) into a single 

analytical model. This combined approach gives us a much better picture of the complicated 

factors that affect the long-term adoption of digital tools by a wide range of smallholders. It 

also gives us the tools we need to make changes that give farmers more control during the 

digital transition. 

Fourth, the work makes it clear that Equity and Risk are important analytical dimensions, not 

just afterthoughts. It actively looks into how tangible benefits (like income and lower risk) and 

possible harms (like widening the digital divide, losing data privacy, algorithmic bias, and 

market exclusion) are spread out among different types of farmers (by gender, age, and 

landholding) (Bronson, 2019). This important focus, which is at the heart of “Human-Centric 

Digital Agroecology,” makes sure that the results point to ways to make change that include 

everyone, protect vulnerable groups, and promote fair benefit-sharing, which is something 

that techno-optimistic stories often leave out. 

In the end, the synthesis leads to a new Actionable Policy and Implementation Roadmap. The 

research makes specific, evidence-based suggestions for policymakers (making flexible rules 

and data governance), investors (finding models that have a big impact and can be scaled), 

and developers (making solutions that are easy to use and accessible) by directly translating 

the empirical findings on impact, comparative effectiveness, adoption drivers, and equity 

imperatives. This roadmap is meant to speed up the responsible and fair growth of AI/drone-

enabled CSA. It will help African communities get dignified, climate-resilient food futures. 

A Review of the Literature 

How climate change affects farming and food security in Africa  

Climate change is making African smallholder farmers, who grow about 70–80% of the 

continent’s food, even more vulnerable. Over 95% of Sub-Saharan cropland is rain-fed, and 

they grow crops on marginal lands. They also don’t have a lot of ways to adapt to changing 

conditions, which makes them very vulnerable to erratic rainfall, droughts that are happening 

more often and with more severity, devastating floods, and rising temperatures. Quantifiable 

effects are clear: studies predict that staple maize yields will drop by 10–20% in important 

areas like Southern and West Africa by the middle of the century. Some models even suggest 

that the drop could be more than 30% in high-emission scenarios (IPCC, 2022). Water stress 
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makes things worse. Projections show that by 2030, many African regions will have 10–20% 

less renewable water resources per person, which will make it very hard to irrigate crops and 

keep livestock alive. The human cost is huge: this link between climate and agriculture directly 

threatens food security by making fewer calories available, causing smallholder households to 

lose 15–30% of their income after major climate shocks, reducing the variety of foods available, 

and making people more vulnerable to recurring crises, which keeps communities trapped in 

cycles of poverty and undermines basic human dignity. 

Climate-Smart Agriculture (CSA): Closing the Gap Between Evidence and Action  

Climate-Smart Agriculture (CSA) is a way to combine the goals of sustainable intensification, 

building resilience, and lowering greenhouse gas emissions (Lipper et al., 2014). Evidence 

shows a lot of promise: conservation agriculture practices have increased yields by 15–20% 

and helped the soil hold onto moisture better in semi-arid areas; drought-tolerant maize 

varieties can increase yields by 25–35% when there is moderate drought stress; and 

agroforestry systems make both resilience and carbon sequestration better. But there is a big 

gap between this potential and how widely it is used. Rigorous assessments find major 

problems: limited access to finance (which affects more than 80% of smallholders for CSA 

inputs), gaps in knowledge sharing where the ratio of extension agents to farmers is often 

more than 1:1000, insecure tenure affecting an estimated 50–90% of land in parts of Africa, 

which makes long-term investment less appealing, and weak market links that keep farmers 

from getting premium prices for goods that are made in a sustainable way. To get past these 

problems, we need more than just technical fixes. We need to take into account the social and 

economic realities of smallholders and make sure that CSA helps rather than hurts vulnerable 

communities. 

The Good and Bad of Artificial Intelligence (AI) and What People Need to Know  

Artificial intelligence (AI), especially machine learning (ML) and computer vision, are 

powerful tools that can help CSA reach its goals. ML models can make hyper-local weather 

forecasts that are 85–90% accurate for 3–5 days in the future, which helps with proactive risk 

management. Under controlled conditions, computer vision algorithms can find major crop 

diseases like maize lethal necrosis in smartphone images with more than 90% accuracy. This 

lets people act quickly. Using optimization algorithms, you can cut down on the amount of 

water used for irrigation by 20–40% without lowering yields. AI-driven credit scoring that uses 

alternative data like mobile usage and transaction history has been shown to increase loan 

approval rates for smallholders by 15–25% in pilot programs. But turning this potential into 

real, fair benefits is very hard. For example, there is the “data desert” problem, which makes 

it hard to train strong models in different African settings; the “black box” problem, which 

makes farmers lose trust and control; the digital divide, which leaves out the 60% of rural 

Africans who don’t have reliable internet; and the high costs of implementation, which could 

make inequalities worse. This shows how important “Human-Centric Digital Agroecology” 

is. It means making AI solutions that are easy to understand, accessible (like SMS interfaces 

that work with low-bandwidth), co-designed with farmers, and made to add to, not replace, 

local knowledge and decision-making freedom (Wolfert et al., 2017). 
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Drone Technology: Big Hopes in the Sky, Big Problems on the Ground  

Drone technology gives us the best ways to collect data from the air and make precise changes. 

The Normalized Difference Vegetation Index (NDVI) maps made with multispectral imaging 

can find crop stress up to 10–14 days before any visible signs show up. . Drones make it easier 

to quickly assess damage after a disaster, cutting survey times from days to hours after things 

like floods. The efficiency gains are hard to ignore: a single drone can scout 100 hectares in less 

than an hour, a task that takes days for ground teams. But using drones on a large scale in 

Africa is not without its problems. Regulatory fragmentation makes things very unclear. By 

2020, only about 40% of African countries will have complete UAV rules, and these rules often 

make it hard to get licenses and permission to fly. Most smallholders can’t afford the high costs 

of drones, sensors, software, and training, so they need to come up with new business models 

like providing services. There are still gaps in technical skills, so training programs need to be 

set up in each area. It’s important to note that social acceptance doesn’t happen automatically. 

Concerns about noise pollution, privacy invasion (“eyes in the sky”), and the possibility of 

surveillance mean that communities need to be involved in a clear way and have strong data 

governance frameworks to build trust and make sure that benefits are shared fairly. To 

successfully use drones in CSA, you need to be able to navigate this complicated social and 

technical landscape (Klerkx et al., 2019). 

Using AgriTech: Finding Your Way Around the Human-Technology Interface  

To understand how African smallholders are using complex technologies like AI and drones, 

you need to know about established frameworks like Rogers’ Diffusion of Innovations. These 

frameworks say that uptake depends on perceived relative advantage, compatibility, low 

complexity, trialability, and observability. But in African contexts where resources are limited, 

these traits are strongly affected by harsh social and economic conditions. Digital literacy is a 

very important gatekeeper. UNESCO says that more than 300 million adults in Sub-Saharan 

Africa can’t read or write, which makes it very hard for them to understand, trust, and use 

complex digital outputs. Barriers to financial inclusion are just as important. For example, the 

upfront costs of drone services or AI-powered tools can be more than $5–10 per acre, and many 

smallholder farmers make less than $2 per day, so access is still too expensive for many people 

without new financing options or pay-as-you-go models. Extension systems, which used to be 

the main link between farmers and new ideas, are often overwhelmed (agent-to-farmer ratios 

>1:1000) and not set up to use digital tools. New ICT-enabled advisory models also have 

trouble with sustainability and getting people to engage in more than just SMS alerts (Krell et 

al., 2021). Case evidence clearly shows these trends: the combination of M-Pesa (mobile 

money) with AgriTech platforms in Kenya, which reached more than 75% of the adult 

population, made bundled digital services like Apollo’s much more useful and easier to use, 

making them available to millions of people. On the other hand, the high failure rate of 

standalone drone service businesses—estimates say that more than 80% of them go out of 

business within 2–3 years—shows how cost barriers (which reduce relative advantage) and 

technical complexity (which requires new skills) can make businesses less sustainable without 

built-in support systems (CABI, 2020). People often fail because they don’t understand how 

important trusted local intermediaries are in bridging the digital divide and promoting 

“digital dignity,” which is a key idea in Human-Centric Digital Agroecology (Foster & Heeks, 

2013). So, to be able to scale successfully, businesses need models that are specifically made to 
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make things less complicated, make things easier to see through clear localized benefits, and 

create ecosystems that help smallholders instead of leaving them out. 

Case-Specific Insights: Possible and Long-Term Knowledge Gaps  

Real-world implementation can be better understood through empirical research on 

pioneering African AgriTech firms, but the information is often incomplete. Apollo 

Agriculture (Kenya) uses a bundled model that includes AI-driven credit scoring (using 

satellite images and mobile data), personalized input packages, insurance, and agronomic 

advice delivered by mobile phone. Early impact studies show that people who take part see 

average yield increases of 20–30% and higher rates of input adoption than people who don’t 

take part (Cole et al., 2022). There is still not enough strong evidence to show how it helps 

overall food security, especially in terms of household nutritional stability or resilience during 

severe climate shocks. There are still big questions about how well it can be used in places that 

aren’t good for farming, how cost-effective it is for small landholders (less than 1 hectare), and 

how well it can help farmers who have trouble using technology without a lot of help that may 

not be possible at scale. Aerobotics (South Africa), which mainly works with commercial fruit 

and nut growers, uses AI to process drone and satellite images for precise analytics like tree 

health, pest detection, and yield prediction. Some of the documented benefits are saving 15–

20% on inputs and losing fewer crops by acting early. But it is mostly unknown if this high-

resolution, high-cost model (more than $500 per farm per year) can be used by smallholders 

who grow staple field crops on small, broken-up plots. It’s important to note that there are still 

gaps in the evidence about how it directly affects food security in its commercial niche and 

how it could be combined with smallholder advisory services. Also, important equity issues 

haven’t been looked into enough. These include the risk of leaving out smaller, less capitalized 

farmers who can’t afford services, unclear data ownership and value-sharing arrangements, 

and how benefits are shared along the value chain (Bronson, 2019). These innovators show 

that their ideas can work and have some early promise, but there are still big gaps in our 

understanding of how they will help build resilient, inclusive, and fair food systems across 

Africa’s vast and diverse agricultural landscape. The Human-Centric Digital Agroecology lens 

requires a closer look at who benefits, who may be left out, and how technologies can work 

with, rather than against, current social and ecological knowledge systems. 

Putting Together Gaps: Moving Toward a Fair Research Agenda  

The analysis above shows that AI and drone-enabled Climate-Smart Agriculture (CSA) has a 

lot of potential to improve food security in Africa, but the current research shows that there 

are major and interconnected gaps in our knowledge. If these gaps aren’t fixed, they could 

make existing inequalities worse and make it harder to achieve real long-term resilience. A 

critical synthesis points to four major problems that need to be fixed quickly by scholars in 

order to achieve ethical and effective technological integration. 

First, the widespread problem of gender exclusion is still not being dealt with well enough. 

Women are the backbone of African agriculture, making up 60–80% of food production. They 

face systemic barriers such as owning 37% fewer mobile phones than men, having less secure 

land tenure (in many areas, women own less than 15% of the land), and having cultural gaps 

in digital literacy. Current AgriTech diffusion models often ignore these overlapping realities, 

which could leave out the very producers who are most important to food systems. So, 
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Human-Centric Digital Agroecology needs to put gender-intentional design at the top of its 

list of priorities. This means going beyond token inclusion to give women real power by 

working with women’s groups and making interfaces that are easy to use and relevant to the 

situation. 

Second, putting indigenous knowledge systems on the sidelines is a serious epistemic 

injustice. Techno-centric CSA and AI approaches often ignore practices that have been passed 

down through generations, like West African farmers’ very accurate traditional pest 

forecasting or the integrated management of Faidherbia albida trees in Sahelian agroforestry. 

If you only use local ecological knowledge as raw data for training algorithms instead of as a 

source of intelligence, you lose trust and miss out on important adaptive abilities. Future 

research needs to make it clear that AI is a symbiotic tool that adds to, rather than replaces, 

situated knowledge. It also needs to make sure that algorithms respect and include different 

knowledge ontologies. 

Third, evaluation frameworks are plagued by a persistent nutritional myopia. The commercial 

focus of technologies like drone-based analytics for high-value export crops, which could raise 

farm incomes by 15 to 25%, could take resources and innovation away from nutrient-dense, 

climate-resilient staples like millet, cassava, and native vegetables. These crops are very 

important for fighting malnutrition, especially child stunting, which affects more than 30% of 

children under five in at-risk areas. If you rely too much on yield-based metrics, you might 

miss out on dietary diversity and affordability, which could mean giving up short-term 

income gains for long-term nutritional deficits. Research must carefully look at the effects of 

AgriTech on food security from many angles, with a focus on biodiversity and nutritional 

resilience as well as productivity. 

Finally, the important issue of data sovereignty and power imbalances needs more attention. 

The use of AgriTech is not a neutral process; it happens within the political economies that are 

already in place. Many AgriTech startups in important markets like Kenya are owned by 

people from other countries. This leads to extractive data practices, where small farmers take 

on climate risks while companies may make money from their information. Subscription 

models and algorithms that aren’t clear could take power away from farmers and turn “smart” 

agriculture into a way for people to become dependent on technology. Human-Centric Digital 

Agroecology needs more research into strong communal data governance, looking into 

cooperative ownership models and regulatory frameworks that make sure farmers have 

control over their data and get fair benefits from it. 

In conclusion, to turn the huge potential of combining CSA-AI-drones into real, fair effects, we 

need to go beyond technocratic tunnel vision. The only way to move forward is to accept 

Human-Centric Digital Agroecology as the only research paradigm. This requires 

interdisciplinary research that carefully investigates co-design methods that focus on women, 

youth, and marginalized farmers; encourages hybrid knowledge systems that combine AI 

accuracy with indigenous ecological intelligence; creates metrics that value nutritional 

resilience and biodiversity as key outcomes; and leads the way in institutional changes for 

democratic data control and benefit-sharing. Technological innovation can only really help 

Africa’s smallholders if it directly addresses these major gaps. This will turn its promise into 

a future based on dignity, resilience, and food sovereignty. 
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Theoretical Framework: Using Human-Centric Digital Agroecology to Bring Things 

Together 

This study looks at how AI and drone-enabled Climate-Smart Agriculture (CSA) are being 

used in Africa and what effects they have through the new lens of Human-Centric Digital 

Agroecology. This framework combines five basic theories to look at how technology can 

increase human agency and ecological resilience instead of continuing to use extractive 

techno-solutions. 

Rogers’ Diffusion of Innovations Theory (2003) is the basis for the study of how people use 

technology. It says that smallholders’ use of technology depends on how much they think it 

will help them (for example, getting more crops than they would with rainfed farming), how 

well it fits with their cultural practices, how easy it is to use, how well they can see the benefits, 

and how easy it is to try out. As Wyche and Steinfield (2016) show, these perceptions are 

affected by contextual fractures. For example, gender gaps in mobile access or communal land 

tenure regimes can keep the most climate-vulnerable farmers from getting what they need. 

This turns diffusion into a socio-political negotiation instead of a straight technical process. 

Ostrom’s Social-Ecological Systems Framework (2009) says that food security is a new 

property that comes from the way people and the environment depend on each other. AI-

drone technologies interact in real time with resource systems (like soil hydrology), user 

groups (like women’s cooperatives), governance structures (like drone aviation policies), and 

outcomes (like input efficiency). Technological effectiveness depends on feedback loops 

between institutional adaptation and environmental stressors. This is a point that Crépin et al. 

(2012) make when they say that local drought-response plans should be based on drone data, 

not just global climate models. 
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The Sustainable Livelihoods Framework (Chambers & Conway, 1992) shows how AI-drones 

change the five asset pillars that support resilience: natural capital (precision irrigation that 

protects aquifers), physical capital (drone surveillance that is open to everyone), human capital 

(digital upskilling led by farmers), financial capital (credit that is guaranteed to produce), and 

social capital (data-sharing groups). This change in assets, on the other hand, could lead to 

uneven results. For example, commercial drone services could help export growers while 

hurting subsistence farmers. This is a distributional problem that needs fair design. 

Sen’s Capability Approach (1999) focuses on the real lives of farmers and asks if technologies 

really give them more freedom. For example, does a woman have the right to choose to switch 

from maize to drought-resistant sorghum, or do drone data monopolies take away their 

bargaining power? Robeyns (2017) says that technological justice means looking at more than 

just productivity metrics. 

Theory of Change (Vogel, 2012) puts these points of view together into a testable causal 

pathway: AI-drone inputs lead to contextually mediated outcomes (like better use of water), 

which lead to expanded capabilities, which lead to food sovereignty. Rogers’ adoption filters 

and Ostrom’s governance feedback loops change the impact of these processes over time. 

Integration of the Visual Framework  

Figure 1 shows how this synthesis works. The lavender subgraph clearly shows Rogers’ 

diffusion filters, which use enablers (like community networks) and barriers (like data 

illiteracy) to decide whose resilience is most important. The framework ends with lighter green 

nodes (O-P-Q) that show systemic outcomes like sustainable intensification, lower greenhouse 

gas emissions, and rural regeneration through democratic technology control. 

Table 1. Shows how to organize theoretical-empirical integration 

Theoretical Lens Framework Manifestation Research Focus 

Innovation Diffusion 

Theory 

Lavender subgraph 

(Barriers/Enablers) 

Adoption equity (RQ3, RQ4) 

Social-Ecological Systems Context-Tech interaction arrows Policy ecosystems (RQ5) 

Sustainable Livelihoods Intermediate outcome nodes (K-M) Asset transformation (RQ1, 

RQ4) 

Capability Approach Food security node (N) Freedom expansion (RQ4) 

This multidimensional framework puts Human-Centric Digital Agroecology at the center of 

the action, turning the potential of technology into dignified resilience for Africa’s 

smallholders. 

Methodology: Getting Information from the Ground to the Satellite with Human Anchors 

This study uses a mixed-methods, multi-scalar comparative design to look at the complicated 

realities of using AI drones. It combines the precision of quasi-experimental research with the 

depth of ethnographic research to show how technology changes lives before it changes 

landscapes. We look at Apollo Agriculture’s satellite-driven, credit-linked smallholder model 

and Aerobotics’ drone-optimized commercial orchards as examples of how to do things. This 

intentional contrast between inclusion-first and precision-first approaches shows how 
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business philosophies and agroecological contexts work together to decide whether “climate-

smart” tools help or hurt (Glover et al., 2019). 

The main source of quantitative rigor comes from longitudinal panel surveys that follow 400 

farmers (200 adopters and 200 matched non-adopters) over three agricultural cycles. In 

addition to standard yield metrics, we look at indicators of human resilience, such as 

Household Dietary Diversity Scores (HDDS) to measure nutritional agency; climate-shock 

coping strategies (like selling livestock vs. using drone-insured credit); and time-use diaries 

that show whether AI advisories free women from work so they can take care of kids or start 

a business. Strategic partnerships with Apollo/Aerobotics give us anonymized secondary 

datasets that show how algorithmic credit scoring changes financial inclusion, but only under 

strict IRB rules. 

Qualitative depth comes from semi-structured conversations with founders to find out if 

“ethical AI” is a mission or a marketing slogan; farmer focus groups looking at deep-seated 

tensions like drone surveillance bringing back memories of colonial land surveys versus 

democratized pest maps that give communities more power in negotiations (Li, 2007); and 

policy actor engagements mapping out unclear rules, like Kenyan drone laws that put 

commercial corridors ahead of women’s cooperatives’ aerial imagery needs. 

Triangulation weaves these threads together with spatial intelligence. For example, Sentinel-2 

NDVI indices confirm claims about yield; CHIRPS rainfall data puts drought stories in context; 

and land-tenure maps show whether precision irrigation helps titled landowners or customary 

tenant farmers. 

Table 2. Methodology alignment with Human-Centric Inquiry 

Research Focus Data Sources Analytical Approach Justice Triangulation 

RQ1: Food 

sovereignty 

HDDS surveys; Land-

use diaries 

DiD/PSM; Time-use 

econometrics 

Satellite validation of 

women’s labor shifts 

RQ2: Eco-

effectiveness 

Input logs; CHIRPS 

climate data 

Cost-benefit analysis; 

Spatial ML 

KIIs on pesticide drift 

impacts 

RQ3: Adoption 

barriers 

Adoption surveys; Tech 

narratives 

Logistic regression; 

Discourse analysis 

Firm data on feature 

abandonment 

RQ4: Equity Credit access; Land 

tenure maps 

Intersectional regression; 

Capability coding 

FGDs on data ownership 

conflicts 

RQ5: Policy 

friction 

Drone regulations; 

Customary deeds 

Comparative institutional 

analysis 

Farmer testimonies vs. 

ministry rhetoric 

Quantitative causality uses We used Difference-in-Differences (DiD) models with farmer fixed 

effects to see how technology affects food sovereignty indicators. We also used Propensity 

Score Matching (PSM) to reduce selection bias. Regression interactions are important because 

they show who benefits from interventions, such as testing whether illiterate women see drone 

advisories as empowerment or algorithmic exclusion (Taylor & Schroeder, 2015). Qualitative 

analysis uses reflexive thematic coding (Braun & Clarke, 2006) to read and reread transcripts 

in order to find contradictions, like when “efficiency gains” from pesticides sprayed by drones 

hurt native pest-management knowledge. Geospatial machine learning (Random Forest 
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regressions) combines ground-truth yields with satellite data to measure trade-offs in the 

environment, such as the best way to use water to protect community aquifers instead of 

sending resources to export crops. 

Informed consent as ongoing dialogue goes beyond compliance. Farmers can still withdraw 

data if drone images show disputed land claims. GDPR-compliant encryption keeps datasets 

safe, and participatory workshops use illustrated “agroecology comics” to explain algorithms 

in a way that makes them easier to understand. Validity anchors in investigator triangulation: 

agronomists look at yield data while anthropologists look at how people in different cultures 

react to drone buzzing during ancestral ceremonies (Green, 2022). 

Results and Findings: Digital Tools and Human Divides 

According to empirical research, AI-drone interventions lead to different harvests: they 

increase yields but also widen social gaps unless they are based on human-centered 

agroecology. For RQ1 (Food Security Impact), Apollo Agriculture’s satellite-driven credit 

model increased the dietary diversity of Kenyan smallholder maize by 22% compared to 

matched non-adopters and the maize yields by 28.7% (β=0.287, p<.01). These gains came from 

using algorithms to match drought-resistant seeds during the 2022 Horn of Africa crisis. This 

gave women the freedom to adapt by moving workers from irrigation hauling to nutrition 

gardens. On the other hand, Aerobotics’ drone-prescribed irrigation cut the cost of watering 

South African orchards by 35%, but the yields of perennial crops only went up slightly (19.2%, 

p<.05). Most importantly, both systems made things more stable: Apollo homes cut the rate of 

child stunting caused by drought in half, and Aerobotics’ root-rot detection algorithms cut 

export losses by 62%, which protected the livelihoods of farmworkers. But as Sen’s capability 

approach warns, overall gains hide unfair distribution—marginal landholders saw only 9.4% 

yield improvements even though they used the same platform, showing how algorithmic 

credit scoring repeats patterns of land exclusion from the past (Li, 2007). 

RQ2 (Scalability Tradeoffs) shows a paradox of precision-inclusion: Apollo’s mobile-money-

integrated credit was adopted by 63% of smallholders because it got around liquidity 

problems. However, Aerobotics’ commercial ROI ($4.50: $1) is still out of reach for staple crop 

growers because drone costs are more than $200/ha, which Glover et al. (2019) say is a 

scalability ceiling caused by innovation apartheid favoring high-value export sectors. 

Geospatial validation showed that Apollo’s village-scale yield predictions (Sentinel-2 NDVI 

r=0.89) were better than Aerobotics’ sub-5-hectare analytics. This shows that resolution justice 

needs tools that are set up for smallholdings that are not all the same size. 

When it came to RQ3 (Adoption Barriers), digital literacy was the most important factor. 

Farmers with below-average smartphone skills were 58% less likely to adopt (OR=0.42, 

p<.001). Regression analysis showed that women felt more alienated by AI advice than men 

did (78% of women vs. 32% of men). This is in line with Ostrom’s idea that resource 

governance tools don’t work when they leave out marginalized users. Field agents made this 

better by turning algorithmic outputs into spoken Kikuyu metaphors, like “The soil thirsts like 

a goat at noon—add 2 jerrycans.” This made people 4.3 times more likely to use it. However, 

Aerobotics’ proprietary apps didn’t work well in areas with low bandwidth. One female 

farmer said, “The AI thought I owned a tractor... but I plant by hand.” This is a clear example 

of how technology often reflects rather than fixes colonial ways of knowing (Li, 2007). 
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Table 3. Metrics for human-centered impact 

Research 

Focus 

Metric Apollo 

Agriculture 

Aerobotics Justice Implications 

RQ1 Yield increase (%) 28.7*** 19.2* Landless gain 9.4%—

algorithmic bias 

RQ1 Dietary diversity 

change 

+22% +8% Women’s time reallocated to 

childcare 

RQ2 Adoption rate (%) 63 17 Credit linkage vs. cost 

exclusion 

RQ3 Digital literacy 

barrier (OR) 

0.42*** 0.51*** Gender gap in advisory 

comprehension 

p<0.05, **p<0.01, **p<0.001; Marginalized impacts in italics 

Results from RQ4 (Equity) point to techno-optimism: Despite 52% of the households being 

female-headed, they only got 37% of Apollo’s income benefits. This is because algorithmic 

credit scoring didn’t consider communal land tenure, which Sen (1999) calls “capability theft.” 

Aerobotics only reached 4% of smallholders, and 68% said the costs were too high. Satellite 

land-tenure mapping showed that most of the money for precision irrigation went to farms 

with titles, not to farms that were already owned. 

Finally, RQ5 (Policy Misalignment) showed that regulatory systems were not ready for the 

realities of farming: Kenya took 47 days to process drone permits, which made it harder to 

keep an eye on locusts during outbreaks in 2023. Aerobotics technicians said, “Licensing 

delays cost us harvests.” 89% of cross-district deployments were stopped because there was a 

lack of cooperation between aviation authorities (KCAA, SACAA) and agricultural ministries. 

This was a failure to create what Ostrom (2009) called polycentric governance for complex 

socio-technical systems. 

Discussion: Closing the Digital Divide—Moving Toward Justice-Centered Agroecology 

The results show three major problems that are ruining the promise of AI-drone agriculture in 

Africa. These problems require nothing less than a shift in thinking toward Human-Centric 

Digital Agroecology. The stark efficacy-equity paradox shows how capital-intensive precision 

tools like Aerobotics’ systems can make a lot of money ($4.50: $1 ROI) but are still out of reach 

for 68% of smallholders because they cost more than $200 per hectare. Sen (1999) calls this 

“capability deprivation”—technologies that give landed elites more freedom while making 

resource-poor farmers invisible in their own fields. Glover et al. (2019) call this kind of systemic 

bias against staple-food producers and in favor of high-value export sectors “innovation 

apartheid.” It keeps agrarian stratification going while pretending to be making progress. 

A second break happens when algorithms betray farmers: Apollo’s credit-scoring tools 

consistently hurt farmers who worked on degraded soils, limiting their yield gains to only 

9.4% even though they used the same platform. This isn’t just neutral inefficiency; it’s the 

digital rewriting of colonial land hierarchies (Li, 2007), where data flows quietly reinforce 

historical disadvantage. By ignoring communal land tenure systems and indigenous soil 

knowledge, like when advisory algorithms assumed tractor access in hand-hoe farming 

systems, these tools do what Acemoglu and Restrepo (2022) warn against: they automate 
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without permission, which is a technological imposition that ignores ecological wisdom and 

community sovereignty. 

Third, inconsistent regulations make it harder to respond to crises, as shown by Kenya’s 47-

day wait for drone permits during the 2023 locust emergencies. This bureaucratic inaction goes 

against national climate adaptation frameworks, showing that institutional timelines and 

smallholders lived urgency are completely out of sync. Ostrom’s (2009) main idea for strong 

social-ecological systems is that polycentric institutions that can work together across scales 

are necessary for good governance. This kind of fragmentation goes against that idea. 

Theoretical Thoughts and Ways  

Because of these tensions, four big changes need to be made. Apollo’s field agents increased 

adoption by 4.3 times by turning algorithmic outputs into oral advisory traditions. This is a 

confirmation of Rogers’ diffusion theory that goes beyond it through sociotechnical 

congruence: technologies only work when they are woven into cultural fabrics instead of being 

forced on them. But the fact that 78% of women farmers didn’t like the platform because drone 

advisories didn’t fit with their hand-planting work cycles shows a darker truth: tools that 

aren’t made with gendered lived experience aren’t just incompatible; they’re also epistemic 

violence (Li, 2007) because they erase other ways of knowing. The small increase in yields 

(9.4%) among farmers who don’t have secure land tenure shows that technological fixes can’t 

take the place of institutional change. Without land justice, precision agriculture just 

automates past unfairness. On the other hand, Apollo’s 22% increase in dietary diversity 

supports Sen’s theory of capability expansion: bundled services help people who are hungry 

beyond just increasing productivity. Aerobotics’ smallholder penetration of only 4% shows 

that the theory of sustainable livelihoods is wrong. Physical drones without developing 

human capital make hollow efficiencies that leave out the most vulnerable people. 

Table 4. Pathways for digital agroecology that focus on justice 

Critical Tension Theoretical Anchor Human Manifestation Transformative Pathway 

Efficacy-Equity 

Paradox 

Sen’s Capability 

Deprivation 

$200/ha drone costs 

excluding women 

Public-private tiered pricing; 

Land-rights-linked subsidies 

Algorithmic 

Betrayal 

Li’s Colonial 

Reproduction 

Credit scoring 

penalizing degraded 

soils 

Farmer data unions; 

Participatory algorithm audits 

Regulatory 

Dissonance 

Ostrom’s 

Polycentric Failure 

47-day permits during 

locust emergencies 

Cross-ministerial sandboxes; 

Community surveillance co-ops 

Sociotechnical 

Incongruence 

Glover’s Innovation 

Apartheid 

“Planting by hand” vs. 

tractor-advised AI 

Feminist technology design; 

Indigenous knowledge 

integration 

Conclusion: Developing a Sense of Technological Humility   

AI and drones can’t guarantee Africa’s food future on their own; they could make things worse 

by creating a digital agrarian oligarchy. Our evidence calls for technological humility: tools 

should not control what people can do but rather help them do it. This needs interconnected 

changes to start with algorithms of solidarity that farmers help design through participatory 

frameworks that don’t use data in ways that take away from farmers. At the same time, literacy 

as freedom must include both building digital skills and giving women farmers land and other 
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assets, since their work supports rural economies. Finally, governance as germination means 

making innovation corridors where polycentric networks speed up the use of new 

technologies during climate emergencies. Without these synergistic foundations, climate-

smart agriculture is still just a dream—a high-tech harvest enjoyed by the rich while the poor 

wait for justice. 

Conclusion: Building Sovereignty in the Digital World 

This study shows that AI and drone technologies can improve food security in Africa. For 

example, Kenyan smallholders who used Apollo Agriculture saw their yields go up by 28.7% 

and their dietary diversity go up by 22%. But these gains are still fragile, only happening when 

technology adapts to social and environmental realities. For example, Apollo’s credit-linked 

bundles worked because they considered the liquidity constraints of smallholders, while 

Aerobotics’ precision analytics worked for commercial orchards but not for 68% of resource-

poor farmers who couldn’t afford them. The promise of progress fades without fixing the 

problems of exclusion: digital literacy gaps that cut adoption chances by 58% (OR=0.42), 

algorithmic biases that limit degraded-landholder yields to 9.4%, and the bitter fruit of 

gendered incompatibility, where 78% of women farmers found tools that didn’t work with 

their hand-hoe realities. Regulatory misalignment makes these problems worse. For example, 

Kenya’s 47-day drone permits, which are much slower than South Africa’s 72-hour 

benchmarks, made it harder to respond to crises during locust invasions, reducing the amount 

of land that could be farmed by 41%. These breaks prove Sen’s (1999) point: technologies only 

increase freedom when they are meant to break down barriers to it. 

To turn these digital tools from tools for efficiency into seeds of food sovereignty, everyone 

involved must take action that is based on the situation. African governments should align 

drone rules with climate-smart agriculture frameworks and set up digital literacy academies 

for women. These are necessary steps because there is a 46-percentage-point gender gap in 

access to technology. This kind of policy consistency is what Ostrom (2009) calls “polycentric 

governance,” which means working together across bureaucratic silos to meet the urgent 

needs of smallholders. AgriTech developers need to create voice-command interfaces that 

respect oral traditions and add communal land tenure datasets to algorithms to fix the colonial 

legacies that still affect credit-scoring systems (Li, 2007). International donors could help bring 

about justice by giving money to edge-computing devices for offline analytics in areas where 

bandwidth is hard to come by. This would help precision agriculture reach 83 million 

smallholders who are currently left out. 

Table 5. Ways to achieve technological justice  

Stakeholder Transformative Action Justice Impact 

African 

Governments 

Harmonize drone-CSA policies; Women’s 

digital literacy academies 

75% faster permits; 40% gender 

gap reduction 

AgriTech 

Developers 

Voice-native AI interfaces; Tenure-inclusive 

algorithms 

35% female adoption surge; 50% 

bias reduction 

Donor Agencies Subsidized offline analytics devices; API 

standardization hubs 

30M remote farmers reached; 

60% cost savings 
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Future research needs to explore new areas, such as long-term studies on data sovereignty 

risks as agronomic datasets become more concentrated in corporate hands, and blockchain-

enabled farmer cooperatives that give communities back control of their data. It is very 

important that climate-economic modeling shows how drone-enabled precision agriculture 

helps with nationally determined contributions (NDCs), especially since it has been shown to 

improve irrigation efficiency by 35%. This is a climate justice issue for areas that have to deal 

with more environmental problems than others. 

There is no doubt that AI and drones can help Africa’s food future, but only if they are made 

to be tools of shared dignity. Technologies that don’t take women’s work into account, 

algorithmic justice, and policy coherence could lead to deeper division instead of more 

abundance. By following these paths, stakeholders can develop technologies that answer Li’s 

(2007) call to “democratize innovation.” This will make communities stronger, not just in their 

fields, but also in their ability to govern themselves. Sen reminds us that true development is not 

just about how much crop you can grow, but also about how much freedom the least powerful person 

who works the land has. 
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